Nomenclature of alcohols and simple esters¹

HENRY RAKOFF, Northern Regional Research Laboratory², Peoria, Illinois 61604

INTRODUCTION

The AOCS Subcommittee on Nomenclature has undertaken the task of defining nomenclature as related to the chemistry of fats and oils. A general paper on nomenclature (1), as well as one on the nomenclature of carboxylic acids (2) already has appeared. A paper on acylglycerols (glycerides) (3) is appearing in this issue, as well as a paper on nitrogen compounds (4). In continuing this work and in keeping with the criteria outlined in ref. 1, most of the names recommended are used in Chemical Abstracts and are recommended by the Committee on Nomenclature, Division of Organic Chemistry, American Chemical Society (5,6).

NOMENCLATURE OF ALCOHOLS

Alcohols are compounds that contain a hydroxy group (OH) attached to an aliphatic carbon. Unsubstituted alcohols are named by dropping the terminal letter "e" from the name of the parent hydrocarbon and adding the suffix "ol." The position of the OH group is indicated by a location number.

CH₃CHOHCH₃ 2-Propanol CH₃CH₂CH(CH₃)CHOHCH₃ 3-Methyl-2-pentanol

OH Cyclohexanol

The names isopropanol, sec-butanol, and tert-butanol are incorrect, because there are no hydrocarbons designated isopropane, sec-butane, or tert-butane to which the suffix "ol" can be added.

Diols not containing other functional groups are named by adding the suffix "diel" to the name of the parent hydrocarbon without elision of the final "e." The positions of the OH groups are indicated by location numbers, and the chain is numbered so as to give the lowest possible numbers to the OH groups.

In substituted alcohols, where the alcohol is not the principal functional group, the presence of the OH group is indicated by the prefix "hydroxy." Some common groups that take precedence over alcohol groups are car-

boxylic acid, acid halide, amide, aldehyde, nitrile, and ketone. Some examples of naming such "mixed compounds" are given below.

СН ₃ СН ₂ СН2СНСН ₂ СООН ОН	3-Hydroxyhexanoic acid
О СН ₃ ССН ₂ СНСН ₃ ОН	4-Hydroxy-2-pentanone

Some common groups that follow alcohol in order of precedence are phenol, amine, and ether. Examples for naming such compounds appear below.

Radicofunctional names of alcohols consist of the radical name derived from the parent compound followed by the word "alcohol."

CH₃CH₂OH Ethyl alcohol CH₃CH₂CH₂CH₂CH₂OH Pentyl alcohol

CH ₃ CHCH ₃	Isopropyl alcohol
ÓН	
CH ₃ CH ₂ CHCH ₃	sec-Butyl alcohol
ÓН	
CH3	
СН3ССН3	tert-Butyl alcohol
ÓН	

Recommended and other acceptable names for saturated, unsaturated, and miscellaneous alcohols appear in Tables I, II, and III.

NOMENCLATURE OF CARBOXYLIC ESTERS

The naming of carboxylic esters follows closely that of carboxylic acids (2). An ester is designated by citing the radical name of the alcohol and then, as a separate word, the name of the acid modified as discussed in the following paragraphs.

If the acid is named by the "oic acid" system, the ester is named by converting "ic acid" to "ate."

TABLE I
Saturated Alcohols^a

Formula	Recommended names	Other acceptable names
CH ₃ OH	†*Methanol	
CH ₃ CH ₂ OH	*Ethyl alcohol	†Ethanol
CH ₃ CH ₂ CH ₂ OH	*Propyl alcohol	†Propanol
СН3СНОНСН3	*Isopropyl alcohol	†2-Propanol (not isopropanol)
CH ₃ CH ₂ CH ₂ CH ₂ OH	*Butyl alcohol	†Butanol
CH ₃ CH ₂ CHOHCH ₃	*sec-Butyl alcohol	†2-Butanol (not sec-butanol)
CH ₃ CHCH ₂ OH	*Isobutyl alcohol	2-Methylpropanol
ĊН ₃		
(CH ₃) ₃ COH	*tert-Butyl alcohol	2-Methyl-2-propanol (not tert-butanol)
CH ₃ (CH ₂) ₃ CH ₂ OH	*Pentyl alcohol	†Pentanol
(CH ₃) ₂ CHCH ₂ CH ₂ OH	*Isopentyl alcohol	3-Methylbutanol
CH ₃ (CH ₂) ₄ CH ₂ OH	*Hexyl alcohol	†Hexanol
(CH ₃) ₂ CHCH ₂ CH ₂ CH ₂ OH	*Isohexyl alcohol	4-Methylpentanol
CH ₃ (CH ₂) ₅ CH ₂ OH	*Heptyl alcohol	†Heptanol
CH ₃ (CH ₂) ₆ CH ₂ OH	*Octyl alcohol	†Octanol
CH ₃ (CH ₂) ₇ CH ₂ OH	*Nonyl alcohol	†Nonanol
CH ₃ (CH ₂) ₈ CH ₂ OH	*Decyl alcohol	†Decanol
CH ₃ (CH ₂) ₉ CH ₂ OH	*Undecyl alcohol	†Undecanol
CH ₃ (CH ₂) ₁₀ CH ₂ OH	*Dodecyl alcohol	†Dodecanol, lauryl alcohol
CH ₃ (CH ₂) ₁₁ CH ₂ OH	†*Tridecanol	Tridecyl alcohol
CH ₃ (CH ₂) ₁₂ CH ₂ OH	†*Tetradecanol	Myristyl alcohol, tetradecyl alcohol
CH ₃ (CH ₂) _{1,3} CH ₂ OH	†*Pentadecanol	Pentadecyl alcohol
СH ₃ (CH ₂) ₁₄ CH ₂ OH	†*Hexadecanol	Palmityl alcohol, hexadecyl alcohol
CH ₃ (CH ₂) _{1.5} CH ₂ OH	†*Heptadecanol	Heptadecyl alcohol
CH ₃ (CH ₂) ₁₆ CH ₂ OH	†*Octadecanol	Stearyl alcohol, octadecyl alcohol

^aNames used by *Chemical Abstracts* for the unsubstituted alcohol only are marked with an asterisk (*); for the substituted alcohol only, with a dagger (†); and for both substituted and unsubstituted alcohol, with both an asterisk and a dagger.

¹This paper is a part of the nomenclature program of the AOCS Nomenclature Subcommittee.

²ARS, USDA.

Formula	Recommended names	Other acceptable names
CH ₂ =CHCH ₂ OH	*Allyl alcohol	†Propenol
CH3CH=CHCH2OH	†*2-Butenol	Crotonyl alcohol
CH ₃ CH ₂ CH=CH(CH ₂) ₇ CH ₂ OH	†*(Z)-9-Dodecenol	Lauroleyl alcohol
CH ₃ (CH ₂) ₃ CH=CH(CH ₂) ₇ CH ₂ OH	†*(Z)-9-Tetradecenol	Myristoleyl alcohol
CH ₃ (CH ₂) ₅ CH=CH(CH ₂) ₇ CH ₂ OH	†*(Z)-9-Hexadecenol	Palmitoleyl alcohol
$CH_3(CH_2)_{10}CH=CH(CH_2)_4CH_2OH(cis)$	†*(Z)-6-Octadecenol	Petroselinyl alcohol
CH ₃ (CH ₂) ₁₀ CH=CH(CH ₂) ₄ CH ₂ OH(trans)	†*(E)-6-Octadecenol	Petroselaidyl alcohol
CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ CH ₂ OH(cis)	†*(Z)-9-Octadecenol	Oleyl alcohol
CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ CH ₂ OH(trans)	†*(E)-9-Octadecenol	Elaidyl alcohol
CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₂ (CH ₂) ₆ CH ₂ OH	†*(9Z,12Z)-9,12-Octadecadienol	Linoleyl alcohol
CH ₃ CH ₂ (CH=CHCH ₂) ₃ (CH ₂) ₆ CH ₂ OH	†*(9Z,12Z,15Z)-9,12,15-Octadecatrienol	Linolenyl alcohol
CH ₃ (CH ₂) ₇ C=C(CH ₂) ₇ CH ₂ OH	†*9-Octadecynol	Stearolyl alcohol

aNames used by Chemical Abstracts for the unsubstituted alcohol only are marked with an asterisk (*); for the substituted alcohol only, with a dagger (†); and for both substituted and unsubstituted alcohol, with both an asterisk and a dagger.

bFor the Z and E system for designating configuration about a carbon-carbon double bond, see refs. 7-9.

TABLE III

Miscellaneous Alcohols ^a		
Formula	Recommended names	Other acceptable names
C ₆ H ₅ CH ₂ OH	†*Benzyl alcohol	
C6H5CH2CH2OH	†*Phenethyl alcohol	2-Phenylethanol
CH ₂ OHCH ₂ OH	*Ethylene glycol	†1,2-Ethanediol
CH3CHOHCH2OH	†*1,2-Propanediol	Propylene glycol
CH2OHCH2CH2OH	†*1,3-Propanediol	Trimethylene glycol
СН-ОНСНОНСН-ОН	*Glycerol	†1,2,3-Propanetriol
C(CH ₂ OH) ₄	†*Pentaerythritol	2,2-bis(Hydroxymethyl)- 1,3-propanediol
(C ₆ H ₅) ₃ COH	†*Triphenylmethanol	Trityl alcohol

^aNames used by Chemical Abstracts for the unsubstituted alcohol only are marked with an asterisk (*); for the substituted alcohol only, with a dagger (†); and for both substituted and unsubstituted alcohol, with both an asterisk and a dagger.

CH3(CH2)3COOCH2CH3 CH3CH2CH2CH=CHCH2COOCH3 CH3OOC(CH2)4COOCH3

Ethyl pentanoate Methyl 3-heptenoate Dimethyl hexanedioate

Substituents on the alcohol or acid portions of the ester, or both, are indicated by a prefix and a location number. Numbering on the acid starts with the carboxyl carbon and on the alcohol with the carbon attached to the oxygen.

СН ₃ СНСН ₂ СООСН ₂ СН ₂ СН ₃	Propyl 3-hydroxybutanoate
он Сн ₃ Сн ₂ Сн ₂ Соосн ₂ Сн ₂ Сн ₂ он	3-Hydroxypropyl butanoate
о Сн ₃ ССн ₂ СооСн ₂ СнСн ₂ Сн ₃	2-Hydroxybutyl 3-oxobutanoate

If the acid is named by the "carboxylic acid" system, the ester is designated by citing the radical name of the alcohol and then the name of the acid with the "ic acid" changed to "ate." For example, the methyl ester of cyclohexanecarboxylic acid would become methyl cyclohexanecarboxylate.

In the "trivial system," used only for acids of long standing and wide usage, the ester is designated by citing the radical name of the alcohol followed by the name of the acid with the "ic acid" changed to "ate."

CH3(CH2)16COOCH3 CH3(CH2)7CH=CH(CH2)7COOCH2CH3 $C_2H_5OOC(CH_2)_3COOC_2H_5$

Methyl stearate Ethyl oleate Diethyl glutarate

REFERENCES

- 1. Goheen, G.E., JAOCS 45:388a (1968).
- 2. Dupuy, H.P., Ibid. 45:390A (1968). Jensen, R.C., Ibid. 52:62A (1975).
- Meisters, G.J., Ibid. 52:67A (1975). "The Naming and Indexing of Chemical Compounds from Chemical Abstracts,' Chem. Abstr. 56 (1962) and subsequent annual subject indexes.
- Fletcher, J.H., O.C. Dermer, and R.B. Fox, Advan. Chem. Ser. 126 (1974).
- 7. International Union of Pure and Applied Chemistry, J. Org. Chem. 35:2851 (1970).
- 8. Blackwood, J.E., C.L. Gladys, K.L. Loening, A.E. Petrarca, and J.E. Rush, J. Amer. Chem. Soc. 90:509 (1968).
- 9. Blackwood, J.E., C.L. Gladys, A.E. Petrarca, W.H. Powell, and J.E. Rush, J. Chem. Soc. 8:30 (1968).

[Received November 15, 1974]

Barker named SCC director

AOCS member Graham Barker has been named director of Area I of The Society of Cosmetic Chemists. Barker was installed as director at the society's Annual Scientific Meeting in December in New York City.

Liquid densities discussed in new publication

Liquid Densities of Oxygen, Nitrogen, Argon, and Parahy drogen recently has been published by the National Bureau of Standards. Authored by H.M. Roder, the book contains tables of pressure, volume, density, and temperature for saturated liquid and for compressed liquid states from the triple point to the critical point of oxygen, nitrogen, argon, and parahydrogen. The table entries of temperature are in Kelvin and degrees Celsius; table entries in pressure are in bars and kp/cm². Volumes or densities are given in several different units, and density ratios are tabulated for each entry. Estimates of the uncertainty for the tabulated data are given.